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The oscillations of a drop moving in another fluid medium have been studied a t  
low values of Reynolds number and Weber number by taking into consideration 
the shape of the drop and the viscosities of the two phases in addition to the 
interfacial tension. The deformation of the drop modifies the Lamb’s expression 
for frequency by including a correction term while the viscous effects split the 
frequency into a pair of frequencies-one lower and the other higher than Lamb’s. 
The lower frequency mode has ample experimental support while the higher 
frequency mode has also been observed. The two modes almost merge with 
Lamb’s frequency for the asymptotic cases of a drop in free space or a bubble in 
a dense viscous fluid but the splitting becomes large when the two fluids have 
similar properties. Instead of oscillations, aperiodic damping modes are found to 
occur in drops with sizes smaller than a critical size ( -  p^P2/T). With the help of 
these calculations, many of the available experimental results are analyzed and 
discussed. 

1. Introduction 
A study of the oscillations of drops and bubbles moving in background media 

finds important applications in many physico-chemical and technological prob- 
lems. The oscillations are affected by the shape of the drop, the inertial effects 
caused by the drop motion, the interfacial tension and the two phase parameters 
like the viscosities. The complexity of the interactions among these factors has 
often restricted the analysis into certain limiting cases like a spherical drop a t  
rest in an inviscid fluid (Lamb 1932). Such calculations are of limited applic- 
ability and have failed to  explain many of the observational details (Kintner 
1963). 

In order to attempt a full discussion of the large amount of experimental data, 
we have calculated the oscillational modes of drops taking into account all the 
four factors, namely shape of the drop, interfacial tension, terminal velocity 
and viscosities. The analysis is confined to the familiar Lamb’s oscillation modes 
where the surface distortion is expressed in terms of Legendre polynomials. The 
damping of the oscillations is also considered. The present analysis brings out 
a number of new features and gives a much better account of the experimental 
observations than the existing limiting cases treated by many workers. However, 
it may be added that the calculations are limited to low values of Reynolds 
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number and Weber number, such that the deformation is small and the oscilla- 
tions considered here are the normal symmetric modes. We outline here the main 
features of the calculations, whose full details will be reported in due course 
(Subramanyam 1968). A recent paper by Miller & Scriven (1968) deals with the 
oscillations of stationary viscous drops in background fluid media. They include 
the contributions from interfacial viscosity and elasticity and study both the 
frequency and damping of the oscillations in various limiting cases. Here we are 
mainly concerned with the oscillations of drops moving with a uniform velocity 
in a fluid medium. However, if we consider the limiting case of the terminal 
velocity approaching a very small value, then the present results agree with 
those of Miller & Scriven as discussed in detail elsewhere (Subramanyam & 
Gopal 1969). 

2. Formulation of the problem and analysis 
The problem is basically one of solving the perturbed equations of motion for 

the drop and the continuous phase with matched boundary conditions. The 
equations of motion are written by choosing the origin of the spherical polar 
co-ordinate system at the centre of the drop and the equations are made dimen- 
sionless by taking the radius of the undeformed spherical drop a as a characteristic 
length, the uniform stream velocity U as a characteristic velocity, aL/U as a 
characteristic time, Ua2 as a characteristic stream function and &pU2 as a charac- 
teristic pressure. Then on account of the drop surface being perturbed, the 
stream function changes from a value $o to $ where 

$ = $o + A$, eidt + A$2 e2idt + . . . , (1)  

where the non-dimensional frequency u' is related to the oscillation frequency u, 
as yet unknown, of the drop by the equation d = ua/ U ;  A$ are the perturbations 
of the stream functions. A similar expansion can be written for the drop phase 
also. These expansions of the stream functions can be substituted in the equations 
of motion 

(2) at 

Then the coefficients of eidt, eeidt, . . . give the following: zeroth, first, . . . , ordered 
perturbation equations 

1 
E($o, $o) = zD47kO7 (4) 

D4A$, - R[E($,, A$,) + E(A$,, $0) ]  - ia'RD2A$, = 0.  ( 5 )  

Similar equations can be written for the drop phase also by changing $ to $ 
and R ( =  Ua/v) to I? ( = Ua/;). The former equations, that is (4), were studied 
by Taylor & Acrivos (1964) in connexion with the flow past a spherical drop. 
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Their calculations revealed that inertial effects of motion past the drop causes 
the drop shape to become oblate spheroidal 

r = 1 + %P2(&-), (6) 

where el, linear in W ( = puU2/T) at low Weber numbers, determines the deviation 
of the drop from the spherical shape. The full value of E~ has been given by Taylor 
& Acrivos (1964). The above expression for the shape of the drop is found to 
agree with experimental observations for low Reynolds and Weber numbers 
(Wellek, Agrawal & Skelland 1966; Hayashi & Matunobu 1967). 

The normal symmetric modes of oscillation of such a deformed drop due to 
external perturbations can be represented by the equation 

r = 1 + s,P2([) + q, eivft4(E). (7 )  
c,, can finally be expressed in terms of other parameters (Subramanyam 1968) 
but our interest here is confined to a discussion of d. The equations (5) can be 
discussed in the following three limiting cases. 

Case (i) : uf = uu/ U = (azu/v) ( l /R) p 1 

The highest derivative term (i.e. D4A@1) and the term with (TI are to be retained 
and the inertial terms can be neglected. Then the non-singular solutions of the 
resulting equations can be written in a suitable form as 

(8) 
A91 = [Br-l+ Dr&J+,dhr)l.F;(E), 
A$, = [ArZ+l + Cr*q+,(Rr)] 4(!$), 

where 
h A 

h2 = - i d R  = -iua2/3. 

Actually, in the expression for A@l, the Hankel function of first kind H’+&hr) 
will have to be used instead of J-,+y(hr). But the latter has been chosen for 
purposes of numerical computations as tables of J*Cl+u(x) are more readily avail- 
able. As a consequence, the present results deviate from those using Hankel 
functions by a magnitude O( l/h2), which turns out to be less than 1 yo in practice. 
Otherwise the characteristic equation (1 I) ,  for example, agrees in the limiting 
case of a stationary drop with that obtained by Miller & Scriven (1968). This is 
being discussed elsewhere (Subramanyam & Gopal 1969) and will not be 
analyzed any further here. The four constants will have to be eliminated by the 
use of the boundary conditions 

u, = ,ar, uo = Go, (9) 

zo=PTe, T,=T A -- 2 ( 1  -+- ’). 
Tr w x1 x2 

at T = 1 +el P2, x1 and x2 being the principal radii of curvature and W = paU2/T 
is the Weber number of flow (Scriven 1960). A calculation of the velocity com- 
ponents from (8) and substitution in the condition (10) give four homogeneous 
equations in A ,  B, C and D. In order that they be satisfied simultaneously, the 
characteristic determinant should vanish. 
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For the sake of simplicity, let us first consider the oscillations of a spherical 
drop (el = O), because many of the special features are brought out in a con- 
venient form. For a spherical drop, el = 0, and the characteristic equation is 
simplified to 

- X Q i + + ( R )  21+ 1 

k - + RQ,+&)] k(Z2 - 1)  - Z(I? + 2) [ X z  

= 0, ( 1 1 )  

With the help of this equation, the frequencies of oscillation can be computed for 
any fluid-fluid system provided the dimensionless parameter 

(r' = ($) ($ $. 1. 

This holds good for drops in very slow motion. Postponing the discussion of a 
typical system like an o-nitrotoluene drop oscillating in water, we shall instead 
simplify the equation in several limiting cases like (a) a drop in free space, ( b )  a 
bubble in a dense viscous liquid, and ( c )  a drop in a similar fluid. 

(a) Por a spherical drop in free space (y + CO, k + a), the above equation 
reduces to the form 

241- 1) 2(12-  1 )  4 v 2 -  W l + i  
. (12) 

c7& = Z(1- 1 )  ( a  + 2 )  =I+-- - 
@ v 1 2  $R ,@ - 2.$Qz+~ &(& - 2Q,+4) 

If we want to study the oscillations of a drop which is relatively at  rest in the 
background fluid medium, we will have to make an important change. In  this 
discussion, we have chosen a/ U as a characteristic time to non-dimensionalize 
the basic equations. For the study of a stationary drop, this unit should be 
replaced by l/(rL where (rL is Lamb's frequency (pa3/T)+, so that in the equations 
we have to replace a/U by l/(rL. The resulting equation agrees with the results of 
Reid & Chandrasekhar (Chandrasekhar 1961) and Miller & Scriven (1968). 

( b )  Similarly, if we consider the oscillations of a bubble in a dense viscous 
fluid (y --f 0, k -+ O),  

( Z - l ) U + 1 ) ( J + 2 )  = 1 +  2 ( Z + l ) ( Z + 2 )  
(r& = 

W d 2  iR 

21(1+ 2 )  - 4 w  + 1) (1 + 2 )  hQ-cz+p 
. (13) - 

h 2 -  2hQ-(,+g) iR[h2-  2hQ-(z+:)] 

(c) For the oscillations of drop in a similar fluid, (y = 1, k = 1 ) .  

(14) 
2z+ 1 

h[Q,+4- Q-u+uI * 

= 1 -  Z(Z - 1) (1 + 1 )  ( I ?  + 2)  
(21 + 1) W d 2  

at3 = 
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From equations (12)-(14) it is evident that the frequencies are altered by the 
viscous terms in the right-hand side of the equations. The deviation from Lamb’s 
result due to viscous effects is clearly seen here. The left-hand side is merely the 
square of the ratio of Lamb’s to the modified frequency. The presence of the terms 
containing h on the right-hand side of (12)-( 14) makes u an implicit parameter 
in these equations as h2 = - Za‘R. Hence a direct evaluation of a is not possible. 
The relative order of magnitudes of various terms may be seen for example in (12), 
right-hand side, as O(l ) ,  0(1/R), O(l/h2) and O(l /h2R)  (since Ql++(h) + O(l/h) 
as h --f a). So the second and third terms need be retained only as correction 
terms for R < 1. Since we are considering the shape of the drop to be either 
spherical or slightly deformed, it requires W < 1 (Taylor & Acrivos 1964). Hence 
the results of case (i) are valid as long as W < 1, R < 1. 

0 8  I I I I I I 1 I 

0 2 4 6 8 

log,, ( b L a 2 / y )  

FIGURE 1. Oscillation modes of a drop in a similar fluid (y = 1, k = 1). (Full curve 
corresponds to a spherical drop, dashed curve refers to a deformed drop, el = 0.2.) 

In the first two limiting cases of a drop in free space or a bubble in a dense 
viscous liquid, the deviation from Lamb’s result is very small. But deviation 
of the order of l0-15% from Lamb’s is found to occur in the practically im- 
portant case of a drop oscillating in a similar fluid. 

Since the characteristic equation (1 1) is an implicit equation in u, a can be 

written as u = ar+icri and g2 = -iaa2/3 = a2((p-i), 

where a2 = ara2/3, /3 = ai/ar, a determines purely the oscillatory part, whereas 
/3 gives the damping of the oscillations. In order to evaluate u, we first separate 
the real and imaginary parts of (1 1).  For a given a, the value of ,4 is determined 
by solving the imaginary part and using these a, /3 in the real part, the value of u 
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is computed. In  the absence of high-speed computational facilities, the calcula- 
tions have proved to be very difficult. As illustrated in the table, the imaginary 
part of &lo;2 is still about 10 yo of the real part and has not yet vanished. We 
have estimated approximately the error caused in a, p, u by this deficiency to 
be about 2-5 %. The alternate signs of Ql+4 generate a pair of frequencies, one 
higher and the other lower than Lamb’s for each drop size. For the case y = 1, 
k = 1, these values are plotted in figure 1,  against the drop size. The table gives 
the calculated values of the frequencies of oscillations as a function of drop 
size for an o-nitrotoluene drop in water using the full equation (1 1) .  

a 
15 
25 
50 

100 

a 

15 
25 
50 

100 

TABLE I 

P eL/e U J U L  a (cm) 
0.0070 0.7508 + 0.0641i 1.154 0.1464 
0.0068 0.8054+ 0.0774i 1.114 1.461 
0-0024 0.9035 + 0.076i 1.052 21.74 
0.0006 0.9546 + 0.0414i 1.024 367.4 

p’ uj$T; g r ) l g L  a (cm) 
0.0062 1.2576 + 0.109i 0.8917 0.2452 
0.0084 1.1790- 0.0869i 0.9206 1.797 
0.0035 1.0952 - 0’064i 0.9554 26.3 
0~0010 1.0482 - 0.0394i 0.9768 403.5 

Damped oscillations of o-nitrotoluene drop in water for R < ua2/v 
( y  = 1.160, k = 2.7526, 1 = 2, T = 26.6 dyne cm-l) 

Reid & Chandrasekhar (Chandrasekhar 1961) first pointed out that the per- 
turbations on the drop surface can be damped aperiodically. For this to occur 
u will have to be purely imaginary. For a typical case of a drop in free space, 
these aperiodic damping modes are calculated and plotted in figure 2. It shows 
that there are two possible damping modes for a given drop size (the lower one 
being favoured because of energy considerations), and that above a certain 
critical drop size, defined by the quantity N uLa2/8 or DP/T, aperiodic damping 
cannot occur. This means that for oscillations to start, the drop size must be larger 
than this critical size (ac). Though this critical size is very small ( -  10V cm) 
for a water drop in air, it assumes values as large as a few mm for a drop or a 
bubble in a dense viscous liquid. Such a critical size for oscillations to start has 
not yet been explicitly observed to our knowledge. 

We can now discuss the oscillations of a deformed drop (for the case (i), 
u’ 9 1). The general equation is quite complicated (Subramanyam 1968). As 
a special case, we can study how deformation modifies the Lamb’s expression 
for frequency of oscillation. As in Lamb’s treatment, if the viscous terms are 
neglected from the expressions (8), then a very simple expression such as 

correct to the first order in s1 is obtained. This can profitably be used in the 
analysis of experimental results for highly deformed drops. Another simple case 
is y = 1, k = 1, I = 2, the prolate-oblate oscillations of a drop in a similar fluid. 
The contribution from the el term turns out to be 

cT2 = cT;(l-$s,), (15) 
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which corrects (14) for the deformation effects. The contributions from the 
viscous and deformation factors are coupled in the general case but in the 
limiting cases they turn out to be additive correction factors. 

4.0 

3.0 

2 
b" 20 
. 

1.0 

0 1 -  I I I I I I I 

0 0 8  1.6 2 4  3 2  

crLa2/v 

FIGVRE 2. Aperiodic damping modes of a drop in free space 
(y + co, k -+ a)). 

Case (ii): d < 1 
Equation ( 5 )  becomes 

D4A@-, - R[E(@o, A@,, + E(A@,, @OH = 0. 

A similar equation for the drop phase can also be written. In  this case, the time- 
dependent terms are relatively small and the resulting equations form the basis 
of the study of deformation, rather than oscillations, of the drop (Taylor & 
Acrivos 1964). 

Case (iii): up - 1 or ua21v - R 
In this case the calculations can be carried out by taking R as an expansion 
parameter. 

Zeroth ordered equatioiis give 

46 

D4A@,0 = 0, D4A$,, = 0, (17) 
Fluid Mech. 37 
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with non-singular solutions 

A$',, = (A#+'+ Cr'+3) q(6). 
A$lo = (Br-l+ D Y - ~ + ~  

The boundary conditions (10) can be used at  r = 1 + the surface of the 
deformed drop, to eliminate the constants A ,  B,  C and D .  The final characteristic 
equation, for the 1 = 2 mode, turns out to be, after some lengthy simplifications 
(Subramanyam 1968). 

- 40(k + 1 )  38k2 + 89k + 48 26k+29 16k+ 14 -+ 
Y d 2 W  ia'kfi  

(19) 

This characteristic equation can be used to discuss the damping and oscilla- 
tions of a drop moving in a background flFid medium. The relative order of 
magnitudes of the various terms is O(l/cr'W),  O( l /a ' f i )  and O(1). Now cr' N 1 
and fi < 1, so the second term is large 2nd hence the first term must also be large 
to balance it, i.e. d = O(f i /$)  and W = O @ )  < 1. This is consistent with the 
a:sumption el < 1. Hence in this case also, the results are valid for 8 < 1 and 
1,v < 1. 

Equation (19) exhibits all the qualitative features described earlier in con- 
nexion with ( 1  1). There is a splitting of the frequencies which is pronounced 
when the two liquids are similar. This equation again reveab the presence of 
a critical size of the order of (p^D2/T) (1 - 3s1/4), above which oscillations can 
occur. Perturbations on drop surfaces with sizes smaller than this critical size 
are damped aperiodically. This critical size is of the same order as that given by 
Reid & Chandrasekhar, and that obtained in the previous case. Damped oscilla- 
tions for drops with larger size are well explained by equation (19). 

In addition, this equation is useful for purposes of calculation and comparison 
with experimental results. It is applicable to the flows with a definite Reynolds 
number. With the help of this equation, the oscillation frequencies are computed 
for the cases of a water drop in air, m-cresol drop in water, o-nitrotoluene drop in 
water and the results are in qualitative agreement with the available experimental 
results. 

3. Brief discussion of experimental results 
The general features of the calculated results can be discussed as follows. The 

various factors like the deformation of the drop, the viscosities of the two phases, 
the inertial effects caused by the drop motion give nearly comparable effects to 
the oscillations and it is not justified to ignore any one of them. 

There is experimental evidence that, for instance, the deformation of the drop 
affects the oscillation frequency even in the stationary case. Schoessaw & 
Boumeister (1966) studied the oscillation frequencies of a stationary drop for 
the modes 1 = 2 to 1 = 8. The experiment was conducted for drops supported 
by their own superheated vapour over a hot plate. The presence of large tempera- 
ture gradients can cause oscillations, but it is supposed that the frequency of 
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oscillation is independent of temperature. Observed results were lower than 
Lamb’s by about 10-15% and this can easily be explained with the help of 
equation (15). If the drop shape in their experiment is assumed to be oblate 
spheroidal of the form r = 1 + e1P2, then el N 0.8 to 1.3. Then a/vL - 0.84 to 0.9 
explaining the observational results, although strictly one cannot apply the 
present calculations for such large el. 

There are a number of experimental observations on moving drops. However 
the lack of information on the several associated physical parameters makes any 
attempt at a detailed comparison futile. The viscosities of the two phases tend 
to damp the perturbation on the surface of the drop in two different ways 
depending on the size of the drop. If the drop size is smaller than a critical value, 
approximately determined by the factor uLa2/9 or p^P/T, then aperiodic damping 
occurs. Though this critical size is as small as 10-6 cm for a system such as water 
drops in air, it assumes values as large as a few mm for a drop in a dense viscous 
liquid. This type of aperiodic damping mode has not been clearly observed though 
Winnikow & Chao (1966) have mentioned the absence of oscillations in such 
systems. 

If the drop size is larger than this critical size, then the viscous effects split the 
frequency mode into a pair of permissible frequencies, one lower and the other 
higher than Lamb’s. The deviation of these from the Lamb’s result is small for 
the asymptotic cases of a drop oscillating in free space or a bubble in dense viscous 
fluid. But it acquires practically important magnitudes for systems of similar 
fluids. 

Thelower mode (lower thanLamb’s by about 10-15 yo) has ample experimental 
support. If the Reynolds number of the flow is very small, the results of case (i) 
are to be applied, but if R N va2/v ,  results of (iii) are applicable. The former case 
gives almost Lamb’s values for a system such as water drops in air and slightly 
reduced values for a liquid-liquid system, while the latter case gives very much 
lower values. Experiments on water drops in air (Lane 1957), o-nitrotoluene 
drop in water, m-cresol drop in water (Kaparthi & Licht 1962) and several other 
systems (Constan & Calvert 1963) all give frequencies lower than Lamb’s by 
about 10-20 yo in general agreement with our present calculations. Schroeder & 
Kintner (1965) also find the frequencies to be about 16 % lower than Lamb’s 
from a study of nineteen liquid-liquid systems. Another observation of Constan 
& Calvert on the oscillations of propylene glycol and ethylene glycol drops in 
gaseous media is that to a first approximation the frequencies are independent 
of R, again in qualitative agreement with our calculations. All these experimental 
results are for drops in terminal motion in the background media. In most of 
the cases, the drop shape will deviate from spherical to an oblate spheroidal 
form. In the experimental observations on systems the shape of the drop has not 
been clearly defined. In  addition to this the experimental results are widely 
scattered because of the varying amplitudes of oscillation of different drops, 
wall effects and, above all, impurities. It is for this reason that a detailed com- 
parison cannot be made between these observed values and calculated results. 
However the general trend of the experiments seems to be in better agreement 
with our calculations than with Lamb’s. 

46-2 
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The higher frequency mode (larger than Lamb’s by about 20%) is not easily 
observed because it is energetically less favourable. However it has an indirect 
evidence in the experimental results of Valentine, Sather & Heideger (1965). 
They observed oscillation frequencies larger than Lamb’s result by about 30- 
40 yo in rather special circumstances. Small drops of cyclohexanol were made to 
coalesce with large drops of a solution of benzene and carbon tetrachloride. 
Frequencies of the large benzene-carbon tetrachloride drops before and after 
coalescence were obtained. Normally one expects, as mentioned earlier, only the 
lower frequency modes. A simple calculation using the drop sizes given by 
Valentine et al. shows that the low frequency of the small drop is approximately 
equal to the high frequency of the large drop. Perhaps this has set up a resonant 
excitation of the high-frequency mode of the large drop. 

I I 

I I I I I 
0.16 0 18 0 2 0  0 2 2  024 

a (em) 

FIGURE 3. Comparison of the calculated results with the measured frequencies of Winnikow 
& Chao (1966) for a pure liquid-liquid system, nitrobenzene drop in water. - - -, Lamb’s 
theory; -, present calculations; x x x , measured oscillation frequency; 0 0 0 ,  
measured eddy discharge frequency. 

There is one refreshing exception to all these experiments which, although in 
qualitative agreement, do not permit a quantitative comparison. Winnikow & 
Chao (1966) have measured the frequencies of nitrobenzene drops moving in 
water taking great care to eliminate all impurities and to keep the physical 
parameters clearly defined. This has enabled us to perform the calculations in 
detail. In  figure 3 the experimentally observed frequencies are compared with 
our calculations and with Lamb’s expression. There is gratifying agreement with 
our calculations. The magnitude of the deviations from Lamb’s frequencies is 
also clearly seen. Accurate measurements on pure liquid-liquid systems, such 
as the above one are badly needed for a definitive comparison between theory 
and experiment. 

Lastly the effect of eddy discharge frequencies should also be noted. Winnikow 
& Chao have also measured these eddy frequencies which are shown in figure 3. 
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The intersection of the eddy discharge curve and the oscillation line will result in 
a resonance, which has been noticed for instance by Gunn (1949) in the case of 
water drops in air. A striking maximum in the frequency-drop size curve observed 
by Kaparthi & Licht (1962) is also most probably due to such a process. 

In  conclusion, it appears that experiments reveal distinct deviations from 
the classic analysis of Lamb. These discrepancies undoubtedly arise from the 
neglect of viscous and inertial effects in Lamb's calculation. Experimental studies 
on clearly defined systems would help to check the validity of the present 
calculations. 
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constant help in the discussion of the problem. The critical comments of the 
referees were also of help. Thanks are also due to  the University Grants Com- 
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